Image Restoration Using Lagrangian Minimization and Bound Selection.

M. A. Kitchenera1, A. Bouzerdoum, IEEE Senior Member2, S. L. Phung, IEEE Member3

a1 School of Electrical, Computer and Telecommunications Engineering
University of Wollongong, Wollongong, NSW 2522, Australia
1mak55@uow.edu.au, 2a.bouzerdoum@ieee.org, 3phung@uow.edu.au.

I. ABSTRACT
In this paper an adaptively regularized image restoration technique is formulated using constrained minimization of image variations.

The problem is formulated in the following way

$$\min_f ||Rf||_{k_2}^{k_1}$$

subject to

$$||g - Hf||_{k_2}^{k_1} < \varepsilon$$

Where f and g are lexicographically ordered vectors representing the restored and degraded images respectively. H and R represent the convolution matrices of the blur and regularization operator. Using this formulation different norms, including l_1 and l_2, can be used in the objective function and constraint equation.

Figure 1 shows the results that were obtained from restoring a one dimensional pulse signal with a Gaussian blur of length 5 and additive zero mean Gaussian noise with a variance of 25.

Figure 2 shows the Improvement in Signal to Noise Ratio of a restored image at each iteration. These results were obtained when restoring a 256x256 cameraman image with a uniform blur of length 9 and zero mean Gaussian noise with a variance of 100. In this experiment the bound was chosen to be $\varepsilon = \Phi n(\sigma^2)$ where Φ is a scaling factor, n is the number of elements in the image and σ^2 is the noise variance of the degraded image. In this example $\Phi = 0.8$ clearly gave the best results.

The Lagrange multiplier method is used to develop a fast iterative restoration approach to the problem using an adaptively computed regularization parameter. These iterations are based on a Differential Multiplier Method.

A heuristic method is also proposed for finding near optimal constraint bounds. Examples of the results that were obtained using the l_2 norm for both for the objective function and the constraint equation can be found in Figures 1 and 2.

REFERENCES